Comment Faire Une Coupe En Sifflet

Le terme d'indice n est l'entier 2 n. On note la suite; La suite dont tous les termes sont nuls est la suite 0, 0, 0, 0,... C'est une suite constante. On la note; La suite prenant alternativement les valeurs 1 et -1 est la suite 1, -1, 1, -1,... On la note; La suite des nombres premiers rangés par ordre croissant est 2, 3, 5, 7, 11, 13, …. Cette suite ne peut pas être définie par son terme général car on ne connait pas de moyen de calculer le terme d'indice n directement en fonction de n; La suite commençant par u 0 = 0 et dont chaque terme est obtenu en doublant le terme précédent et en ajoutant 1 commence par 0, 1, 3, 7, 15, 31, …. C'est une suite définie par une récurrence simple. On peut montrer que son terme général est donnée par u n = 2 n – 1; La suite commençant par u 0 = 1 et u 1 = 1 et dont chaque terme est obtenu en faisant la somme de deux termes précédents commence par 1, 1, 2, 3, 5, 8, 13, …. C'est une suite définie par une récurrence double. Elle est connue sous le nom de suite de Fibonacci.

  1. Demontrer qu une suite est constante un
  2. Demontrer qu une suite est constante du
  3. Demontrer qu une suite est constante

Demontrer Qu Une Suite Est Constante Un

Une suite géométrique de raison q > 0 q>0 et de premier terme u 0 > 0 u_0>0 est croissante (resp. décroissante) si et seulement si q ⩾ 1 q \geqslant 1 (resp. q ⩽ 1 q \leqslant 1). Deuxième méthode Étude de fonction Si la suite ( u n) (u_n) est définie par une formule explicite du type u n = f ( n) u_n=f(n), on peut étudier les variations de la fonction x ⟼ f ( x) x \longmapsto f(x) sur [ 0; + ∞ [ [0; +\infty[ si f f est croissante (resp. strictement croissante), la suite ( u n) \left(u_{n}\right) est croissante (resp. strictement croissante) si f f est décroissante (resp. strictement décroissante), la suite ( u n) \left(u_{n}\right) est décroissante (resp. strictement décroissante) si f f est constante, la suite ( u n) \left(u_{n}\right) est constante Exemple 3 On reprend la suite ( u n) (u_n) de l'exemple 1 définie pour tout n ∈ N n \in \mathbb{N} par u n = n n + 1 u_n= \frac{n}{n+1}. On définit f f sur [ 0; + ∞ [ [0; + \infty [ par f ( x) = x x + 1 f(x)= \frac{x}{x+1}. f ′ ( x) = 1 × ( x + 1) − 1 × x ( x + 1) 2 = 1 ( x + 1) 2 > 0 f^\prime (x)= \frac{1\times(x+1) - 1\times x}{(x+1)^2} = \frac{1}{(x+1)^2} > 0 f ′ f^\prime est strictement positive sur [ 0; + ∞ [ [0; + \infty [ donc la fonction f f est strictement croissante sur [ 0; + ∞ [ [0; + \infty [ et la suite ( u n) (u_n) est strictement croissante.

Demontrer Qu Une Suite Est Constante Du

Cet article est une introduction à la notion de suite. Pour une présentation formelle et détaillée, voir Suite (mathématiques). En mathématiques, de manière intuitive, on construit une suite de nombres réels en choisissant un premier nombre que l'on note u 1, un second noté u 2, un troisième noté u 3, etc [ 1]. Une suite infinie est donnée si, à tout entier n supérieur ou égal à 1, on fait correspondre un nombre réel noté u n. Le réel u n est appelé le terme d' indice n de la suite [ 1]. On peut décider de commencer les indices à 0 au lieu de 1 [ 2] ou bien de faire démarrer les indices à partir d'un entier n 0. On peut aussi décider d'arrêter les indices à un certain N. On crée alors une suite finie. Une suite peut donc être vue comme une application de l'ensemble des entiers naturels [ 3], [ 1] ou d'une partie A de à valeurs dans. Si u est une application de A à valeur dans, on note u n, l'image u ( n) de n par u. L'application u est notée ou plus simplement. Il existe donc deux notations voisines: la notation ( u n) correspondant à une application et la notation u n désignant un nombre réel [ 3].

Demontrer Qu Une Suite Est Constante

Exemples: Les nombres 1; 2; 4; 8; 16; 32 sont les premiers terme d'une suite géométrique de premier terme $u_0=1$ et de raison q=2. On peut dont écrire la relation de récurrence suivante: $U_{n+1}=2\times U_n$ C'est cette définition qui permet de justifier qu'une suite est géométrique. Une des questions classiques des différents sujets E3C sur les suites numériques. On a aussi rédigé un cours sur comment démontrer qu'une suite est géométrique. Terme général d'une suite géométrique On le comprends bien, la relation de récurrence permet de calculer les termes d'une suite géométrique de proche en proche en proche. Mais cette formule ne permet pas de calculer un terme connaissant son rang. C'est en cela que le terme général d'une suite géométrique, ou expression de Un en fonction de n est utile. Pour une suite géométrique de raison q et de premier terme $U_0$: $U_n=U_0 \times q^n$ Cette formule n'est valable que si la suite géométrique est définie à partir du rang 0. Elle s'adapte pour toute suite définie à partir du rang 1 ou de tout autre rang p: A partir du rang 1: $U_n=U_1\times q^{n-1}$ A partir d'un rang p quelconque, formule généralisée: $U_n=U_p\times q^{n-p}$ Avec l'exemple précédent d'une suite de premier terme $U_0=1$ et q=2, on peut alors exprimer Un en fonction de n: $U_n=1\times 2^n=2^n$ Vous le comprenez bien, ces formules permettent de déterminer une forme explicite de la suite.

↑ a b c et d Voir, par exemple, André Deledicq, Mathématiques lycée, Paris, éditions de la Cité, 1998, 576 p. ( ISBN 2-84410-004-X), p. 300. ↑ Voir, par exemple, Deledicq 1998, p. 304. ↑ Voir, par exemple, le programme de mathématiques de TS - BO n o 4 du 30 août 2001, HS, section suite et récurrence - modalités et mise en œuvre. ↑ Voir, par exemple, Mathématiques de TS, coll. « math'x », Didier, Paris, 2002, p. 20-21, ou tout autre manuel scolaire de même niveau. Voir aussi [ modifier | modifier le code] Suite (mathématiques) pour plus de détails Série (mathématiques) Famille (mathématiques) Suite généralisée Portail de l'analyse