Comment Faire Une Coupe En Sifflet

Droite des milieux – 4ème – Exercices corrigés – Géométrie Exercice 1 On suppose que ABC est rectangle en A. 1) Que peut-on dire des droites (IJ) et (AB)? Des droites (IJ) et (AC)? 2) Préciser la nature du quadrilatère AJIK. Exercice 2 Tracer un triangle ABC sachant que AB = 4 cm, AC = 5 cm et BC = 6 cm. 1) Prouver que la droite (BJ) coupe le segment [KI] en son milieu. 2) Calculer les périmètres du triangle IJK et des quadrilatères AKIJ, BKJI et CIKJ. Tracer un triangle ABC, puis construire les points D, E, F, G, H et I, symétriques respectifs de A par rapport à C, de A par rapport à B, de C par rapport à B, de C par rapport à A, de B par rapport à A et de B par rapport à C. Comparer les périmètres du triangle ABC et de l'hexagone DEFGHI. Exercice 4 I et J sont les milieux de [BC] et de [CD]. La parallèle à (AB) passant par I et la parallèle à (AD) passant par J se coupent en P. Montrer que P est le milieu de [AC]. Exercice 5 1) Prouvons que les droites (IJ) et (BC) sont parallèles. 2) Prouvons que K est le milieu du segment [AE].

  1. Droite des milieux exercices du
  2. Droite des milieux exercices le
  3. Droite des milieux exercices les
  4. Droite des milieux exercices de la

Droite Des Milieux Exercices Du

IJ étant constant, [CE] et [DF] ont la même mesure. De plus, (CE)//(DF) donc CDFE est un parallélogramme. exercice 7 Dans le triangle CAD, la parallèle à (AD) passant par J coupe [CA] dans son milieu, d'après le théorème des milieux. Dans le triangle CAB, la parallèle à (AB) passant par I coupe [CA] dans son milieu, d'après le théorème des milieux. Le milieu de [CA] étant unique, la parallèle à (AB) passant par I, et la parallèle à (AD) passant par J, se coupent dans le milieu du segment [CA]. L'intersection de ces deux droites étant le point P, P est le milieu de [CA]. exercice 8 Puisque ABCD est un parallélogramme, et que E appartient à [AB], on a (AE) qui est parallèle à (DC). Or F appartient à [DC] donc (AE) est parallèle à (DF). Dans le triangle D'DF, puisque (AE)//(DF) et que A est le milieu de [D'D], on a alors, d'après le théorème des milieux, DF = 2×AE. Or AE = AB, donc DF = 2 × AB. Étant donné que DC = AB, et que DF = 2 × AB, DF = 2 × CD, et donc CF = CD - DF = CD - 2 × CD CF = CD

Droite Des Milieux Exercices Le

Donc H est bien le milieu de [KI] 2. Le périmètre de IJK vaut: IJ + IK + JK. IJ vaut la moitié de AB, soit 2 cm IK vaut la moitié de AC, soit 2, 5 cm KJ vaut la moitié de BC, soit 3 cm Périmètre de IJK = 2 + 2, 5 + 3 = 7, 5 cm Périmètre de AKIJ = AK + KI + IJ + JA AK = JI = 2 cm KI = JA =2, 5 cm Périmètre de AKIJ = AK + KI + IJ + JA = 2 + 2 + 2, 5 + 2, 5 = 9cm Périmètre de BKIJ = BK + KJ + JI + IB BK = AK = IJ = 2 cm BI = KJ = 3 cm Périmètre de BKIJ = BK + KJ + JI + IB = 2 + 2 + 3 + 3 = 10 cm Périmètre de CIKJ = CI + IK + KJ + JC CI = BI = KJ = 3 cm JC = JA = IK = 2, 5 cm Périmètre de CIKJ = CI + IK + KJ + JC = 3 + 3 + 2, 5 + 2, 5 = 11 cm exercice 3 1. D'après le théorème des milieux, (AB) et (IJ) sont parallèles, et IJ vaut la moitié de [AB]. [ML] coupe [KI] et [KJ] respectivement dans leurs milieux, donc d'après le théorème des milieux, (ML) est parallèle à (IJ) et la longueur ML vaut la moitié de la longueur IJ. Puisque (ML) est parallèle à (IJ), et que (IJ) est parallèle à (AB), alors (ML) est parallèle à (AB).

Droite Des Milieux Exercices Les

On sait que les droites (AB) et (IJ) sont parallèles. Or, si deux droites sont parallèles, alors toute perpendiculaire à l'une est perpendiculaire à l'autre. J'en conclus que les droites (AC) et (IJ) sont perpendiculaires. 2. (IJ) et (AB) sont parallèles, [AK] appartient à [AB]. AK vaut la moitié de AB, ainsi que IJ. On a donc un quadrilatère qui a un angle droit, et deux côtés opposés qui sont parallèles de même mesure. Ce quadrilatère est un rectangle. AKIJ est donc un rectangle. exercice 2 1. D'après le théorème des milieux, si un segment coupe l'un des trois côtés d'un triangle en son milieu, et parallèlement à un autre côté de ce triangle, ce segment coupera le troisième côté du triangle en son milieu, et la longueur du segment sera égale à la moitié du côté auquel il est parallèle. Soit H le point d'intersection entre la droite (BJ) et la droite (KI). On sait que les segments [AJ] et [KI] ont la même longueur, et sont parallèles d'après le théorème des milieux. Puisque (KH) est parallèle à (AJ), et que [KH] coupe [AB] dans son milieu, alors KH vaut la moitié de AJ.

Droite Des Milieux Exercices De La

Pour $[BE]$ $\begin{align*} \begin{cases} x_C=\dfrac{x_B+x_E}{2}\\\\y_C=\dfrac{y_B+y_E}{2}\end{cases} &\ssi \begin{cases} 4=\dfrac{6+x_E}{2}\\\\-1=\dfrac{6+y_E}{2}\end{cases}\\\\ &\ssi \begin{cases} 8 = 6+x_E\\\\-2=6+y_E\end{cases} \\\\ &\ssi \begin{cases} x_E=2\\\\y_E=-8\end{cases} Donc $E(2, -8)$. Exercice 7 On considère les points $A(-1;2, 5)$, $B(-4;-1, 5)$ et $C(2;-2)$. Déterminez les coordonnées du milieu $D$ de $[AB]$. La droite parallèle à $(BC)$ passant par $D$ coupe $[AC]$ en $E$. Déterminez les coordonnées de $E$. Correction Exercice 7 $D$ est le milieu de $[AB]$. Par conséquent: $$\begin{cases} x_D=\dfrac{-1+(-4)}{2} = -\dfrac{5}{2}\\\\y_D=\dfrac{2, 5+(-1, 5)}{2} = \dfrac{1}{2}\end{cases}$$ Donc $D\left(-\dfrac{5}{2};\dfrac{1}{2}\right)$. Dans le triangle $ABC$, $D$ est le milieu de $[AB]$, $E$ appartient à $[AC]$ et $(DE)$ est parallèle à $(BC)$. Par conséquent, d'après le théorème des milieux, $E$ est le milieu de $[AC]$. Ainsi: $$\begin{cases} x_E=\dfrac{-1+2}{2}=\dfrac{1}{2}\\\\y_E=\dfrac{2, 5+(-2)}{2} = \dfrac{1}{4}\end{cases}$$ Donc $E\left(\dfrac{1}{2};\dfrac{1}{4}\right)$.

$ Démontre que le quadrilatère $FHIJ$ est un rectangle. Exercice 23 $(\mathcal{C})$ et $(\mathcal{C'})$ sont deux cercles de centre $O$ dont les rayons sont respectivement $2. 5\;cm$ et $5\;cm. $ Une demi-droite $[Ox)$ coupe $(\mathcal{C})$ au point $A$ et $(\mathcal{C'})$ au point $B. $ Une autre demi-droite $[Oy)$ non opposée à $[Ox)$ coupe $(\mathcal{C})$ au point $E$ et $(\mathcal{C'})$ au point $F. $ 1) Démontre que $BF=2AE. $ 2) Quelle est la nature du quadrilatère $ABFE$? Justifie ta réponse.